泰勒展开,LCT

题解

题目都告诉你了:

若函数 f(x)f(x)nn 阶导数在 [a,b][a,b] 区间内连续,则对 f(x)f(x)x0 (x0[a,b])x_0 \ (x_0\in[a,b]) 处使用 nn 次拉格朗日中值定理可以得到带拉格朗日余项的泰勒展开式

f(x)=k=0n1f(k)(x0)(xx0)kk!+f(n)(ξ)(xx0)nn!,x[a,b]f(x)=\sum_{k=0}^{n-1}\frac{f^{(k)}(x_0)(x-x_0)^k}{k!}+\frac{f^{(n)}(\xi)(x-x_0)^n}{n!},x\in[a,b]

其中,当 x>x0x > x_0 时,ξ[x0,x]\xi\in[x_0,x]。当 x<x0x < x_0 时,ξ[x,x0]\xi\in[x,x_0]
f(n)f^{(n)} 表示函数 ffnn 阶导数。


那摆明了全部泰勒展开,LCT 维护多项式和。

对于 f(x)=eax+bf(x)=e^{ax+b},在 x0=bax_0=-\dfrac{b}{a} 处展开,有:

f(x)k=0n1ak(x+ba)kk!=k=0n1(ax+b)kk!=k=0n11k!i=0k(ki)aibkixi=i=0n1xik=in1aibkii!(ki)!\begin{aligned} f(x)\approx& \sum_{k=0}^{n-1} \frac{a^k\left(x+\frac{b}{a}\right)^k}{k!}\\ =& \sum_{k=0}^{n-1} \frac{(ax+b)^k}{k!}\\ =& \sum_{k=0}^{n-1} \frac{1}{k!}\sum_{i=0}^k \binom{k}{i}a^ib^{k-i}x^i\\ =& \sum_{i=0}^{n-1} x^i \sum_{k=i}^{n-1} \frac{a^ib^{k-i}}{i!(k-i)!} \end{aligned}

对于 f(x)=sin(ax+b)f(x)=\sin(ax+b),在 x0=bax_0=-\dfrac{b}{a} 处展开,有:

f(x)k=0n1s(k)ak(x+ba)kk!=k=0n1s(k)(ax+b)kk!f(x)\approx \sum_{k=0}^{n-1} \frac{s(k)a^k\left(x+\frac{b}{a}\right)^k}{k!} =\sum_{k=0}^{n-1} \frac{s(k)(ax+b)^k}{k!}

其中,

s(k)={1kmod4=11kmod4=30otherwises(k)=\begin{cases} 1 & k \bmod 4=1\\ -1 & k \bmod 4=3\\ 0 & \text{otherwise} \end{cases}

化简一下,易得:

f(x)i=0n1xik=in1s(k)aibkii!(ki)!f(x)\approx \sum_{i=0}^{n-1} x^i \sum_{k=i}^{n-1} s(k)\frac{a^ib^{k-i}}{i!(k-i)!}

对于 f(x)=ax+bf(x)=ax+b,不用展开。

其他的 Link-Cut-Tree 随便维护就行了,至于精度,展开到 x19x^{19} 足矣。

CODE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef double db;
const int N = 100010;
const int D = 20;
struct poly {
db e[D];
poly() { memset(e, 0, sizeof(e)); }
db& operator[](const int& k) { return e[k]; }
friend poly operator+(const poly& a, const poly& b) {
poly r;
for (int i = 0; i < D; ++i) r[i] = a.e[i] + b.e[i];
return r;
}
db operator()(const db& x) const {
db r = 0, _x = 1;
for (int i = 0; i < D; ++i) {
r += e[i] * _x;
_x *= x;
}
return r;
}
};

void setf(poly& p, int op, db a, db b) {
memset(p.e, 0, sizeof(p.e));
static db s[2][4] = {
{ 0, 1, 0, -1},
{ 1, 1, 1, 1 },
};
if (op <= 2) {
db tp = 1; // tp = a^i / i!
for (int i = 0; i < D; ++i) {
db cur = tp;
for (int k = i; k < D; ++k) {
p[i] += s[op - 1][k % 4] * cur;
cur = cur * b / (db)(k - i + 1);
}
tp = tp * a / (db)(i + 1);
}
}
else p[1] = a, p[0] = b;
}

namespace LCT {
#define ls ch[x][0]
#define rs ch[x][1]
int f[N], ch[N][2], rev[N];
poly val[N], sum[N];
inline bool Get(int x) { return ch[f[x]][1] == x; }
inline bool isRoot(int x) { return ch[f[x]][0] != x && ch[f[x]][1] != x; }
inline void PushUp(int x) { sum[x] = sum[ls] + sum[rs] + val[x]; }
inline void Setrev(int x) { if (x) swap(ls, rs), rev[x] ^= 1; }
inline void PushDown(int x) {
if (rev[x]) {
Setrev(ls); Setrev(rs); rev[x] = 0;
}
}
inline void Rotate(int x) {
int y = f[x], z = f[y], k = Get(x);
if (!isRoot(y)) ch[z][Get(y)] = x;
ch[y][k] = ch[x][k ^ 1]; f[ch[x][k ^ 1]] = y;
ch[x][k ^ 1] = y; f[y] = x; f[x] = z;
PushUp(y); PushUp(x);
}
void Update(int x) {
if (!isRoot(x)) Update(f[x]);
PushDown(x);
}
inline void Splay(int x) {
Update(x);
for (int fa; fa = f[x], !isRoot(x); Rotate(x)) {
if (!isRoot(fa)) Rotate(Get(fa) == Get(x) ? fa : x);
}
PushUp(x);
}
inline void Access(int x) {
for (int p = 0; x;p = x, x = f[x]) {
Splay(x); rs = p; PushUp(x);
}
}
inline void MakeRoot(int x) {
Access(x); Splay(x); Setrev(x);
}
inline int FindRoot(int x) {
Access(x); Splay(x);
while (ls) PushDown(x), x = ls;
Splay(x);
return x;
}
inline void Split(int x, int y) {
MakeRoot(x); Access(y); Splay(y);
}
inline void Cut(int x, int y) {
MakeRoot(x); Access(y); Splay(y);
ch[y][0] = f[x] = 0;
}
inline void Link(int x, int y) {
MakeRoot(x); MakeRoot(y); f[x] = y;
}
inline bool Check(int x, int y) {
MakeRoot(x);
return FindRoot(y) == x;
}
#undef ls
#undef rs
}

int n, m; char type[5];

int main() {
scanf("%d%d%s", &n, &m, type);
for (int i = 1; i <= n; ++i) {
int op; db a, b;
scanf("%d%lf%lf", &op, &a, &b);
setf(LCT::val[i], op, a, b);
LCT::PushUp(i);
}
cerr << "init ok." << endl;
while (m--) {
char op[20];
int u, v, f; db a, b, x;
scanf("%s", op);
if (op[0] == 'a') {
scanf("%d%d", &u, &v); ++u, ++v;
LCT::Link(u, v);
} else if (op[0] == 'd') {
scanf("%d%d", &u, &v); ++u, ++v;
LCT::Cut(u, v);
} else if (op[0] == 'm') {
scanf("%d%d%lf%lf", &u, &f, &a, &b); ++u;
LCT::Split(u, u);
setf(LCT::val[u], f, a, b);
LCT::PushUp(u);
} else {
scanf("%d%d%lf", &u, &v, &x); ++u, ++v;
if(!LCT::Check(u, v)) {
puts("unreachable");
continue;
}
LCT::Split(u, v);
printf("%.20e\n", LCT::sum[v](x));
}
}


return 0;
}